LH2 and gaseous hydrogen
Hy2gen offers hydrogen under the forms of liquid and gaseous as bespoke solutions tailored to the customers’ circumstances.

LH2In collaboration with our partners, we liquefy hydrogen by using compressor resembling a jet engine in both appearance and principle.

To transform hydrogen from its original stage into a liquid hydrogen, it must be cooled below hydrogen’s critical point of −252.87 °C. Liquid hydrogen is typically used as a concentrated form of hydrogen storage. Once liquefied, it can be maintained as a liquid in pressurized and thermally insulated containers. LH2 storage takes less space than gaseous hydrogen’s at normal temperature and pressure.

Please add 1- 2 photo(s) of the compressor and container.

Gaseous hydrogenAs hydrogen is a very light gas, it escapes easily from the storage tank. We compress the gaseous hydrogen at high pressure into transportation vessels at highest safety levels in high pressure transportation containers for volumes of hydrogen < 1t. Our customized solutions for the transportation of gaseous pressurized hydrogen include containers, vessels and pipelines, depending on each project or use case.

 

Transport
H2containers will be made available for the clients at Hy2gen production facility to comply with the international and respective national safety requirements.

Please add 1- 2 photo(s) of the transport solutions for gaseous H2.

 

Bio-methanol
In collaboration with our partners, we contribute to the production of bio-methanol in a large-scale anaerobic digester to convert organic waste to biogas (methane and CO2). A mixture of gases from organic waste materials is converted to methanol in a conventional steam-reforming/water-gas shift reaction followed by high-pressure catalytic methanol synthesis.

Biomass sources are preferable for bio-methanol than for bioethanol because bioethanol is a high-cost and low-yield product. Methanol is produced from hydrogen-carbon oxide mixtures by means of the catalytic reaction of carbon monoxide and some carbon dioxide with hydrogen. Bio-methanol is chemically identical to conventional methanol. This is a promising alternative, with a diversity of fuel applications with proven environmental, economic, and consumer benefits.

 

 

Bio-methane
Bio-methane is a clean form of biogas that is 98% methane – a green gas which can be used interchangeably with conventional fossil-fuel natural gas.

In the case of vehicle fuel or for grid injection, it is important to have a high energy content in the gas. The energy content of biogas is in direct proportion to the methane concentration and by removing carbon dioxide in the upgrading process, the energy content of the gas is increased.

Together with our partners, we apply techniques for biogas upgrading in the production of bio-methane in a large-scale anaerobic plant to offer the following benefits:

  • Net zero emissions
  • Ability to capture methane emissions from other processes such as organic waste
  • Interchangeably with existing natural gas usage